Name | Econ_Domain | Social_Domain | Env_Domain | |
---|---|---|---|---|
0 | Aberdeen, SD Micro Area | 0.565264 | 0.591259 | 0.444472 |
1 | Aberdeen, WA Micro Area | 0.427671 | 0.520744 | 0.429274 |
Invalid Date
We’ll work with sustainability index data for US cities to explore density estimation further.
Name | Econ_Domain | Social_Domain | Env_Domain | |
---|---|---|---|---|
0 | Aberdeen, SD Micro Area | 0.565264 | 0.591259 | 0.444472 |
1 | Aberdeen, WA Micro Area | 0.427671 | 0.520744 | 0.429274 |
Let’s use the environmental sustainability index (Env_Domain
) initially. The distribution of environmental sustainability across cities is shown below.
hist = alt.Chart(
sust
).transform_bin(
'esi',
field = 'Env_Domain',
bin = alt.Bin(step = 0.02)
).transform_aggregate(
count = 'count()',
groupby = ['esi']
).transform_calculate(
Density = 'datum.count/(0.02*933)',
ESI = 'datum.esi + 0.01'
).mark_bar(size = 8).encode(
x = 'ESI:Q',
y = 'Density:Q'
)
hist.configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
A common choice for Gaussian KDE bandwidth is Scott’s rule:
\[ b = 1.06 \times s \times n^{-1/5} \]
# bandwitdth parameter
n, p = sust.shape
sigma_hat = sust.Env_Domain.std()
bw_scott = 1.06*sigma_hat*n**(-1/5)
# plot
smooth = alt.Chart(
sust
).transform_density(
'Env_Domain',
as_ = ['Environmental sustainability index', 'Density'],
extent = [0.1, 0.8],
bandwidth = bw_scott
).mark_line(color = 'black').encode(
x = 'Environmental sustainability index:Q',
y = 'Density:Q'
)
(hist + smooth).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
The statsmodels
package has KDE implementations with finer control. This will allow us to experiment with other kernels.
# compute the gaussian KDE using statsmodels
kde = sm.nonparametric.KDEUnivariate(sust.Env_Domain)
kde.fit(bw = bw_scott)
<statsmodels.nonparametric.kde.KDEUnivariate at 0x169c85310>
The object kde
has .support
(\(x\)) and .density
(\(\hat{f}(x)\)) attributes:
Now let’s try varying the kernel. The ‘local histogram’ introduced last lecture is a KDE with a uniform kernel.
# compute density estimate
kde = sm.nonparametric.KDEUnivariate(sust.Env_Domain)
kde.fit(kernel = 'uni', fft = False, bw = 0.02)
# arrange as dataframe
kde_df = pd.DataFrame({'Environmental sustainability index': kde.support, 'Density': kde.density})
# plot
smooth2 = alt.Chart(
kde_df
).mark_line(color = 'black').encode(
x = 'Environmental sustainability index:Q',
y = alt.Y('Density:Q', scale = alt.Scale(domain = [0, 12]))
)
(hist + smooth2 + smooth2.mark_area(opacity = 0.3)).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
statsmodels.nonparametric.KDEUnivariate
abbreviationsTake 5-6 minutes with your neighbor and use the activity notebook to experiment and answer the following.
epa
) kernel is used in place of a Gaussian (gau
) kernel while the bandwidth is held constant?tri
) have on how local peaks appear?Now let’s estimate the joint distribution of environmental and economic sustainability indices. Here are the values:
There are a few options for displaying a 2-D histogram. One is to bin and plot a heatmap, as we saw before:
alt.Chart(
sust
).mark_rect().encode(
x = alt.X('Env_Domain', bin = alt.Bin(maxbins = 40), title = 'Environmental sustainability'),
y = alt.Y('Econ_Domain', bin = alt.Bin(maxbins = 40), title = 'Economic sustainability'),
color = alt.Color('count()', scale = alt.Scale(scheme = 'bluepurple'), title = 'Number of U.S. cities')
).configure_axis(
labelFontSize = 14,
titleFontSize = 16
).configure_legend(
labelFontSize = 14,
titleFontSize = 16
)
Another option is to make a bubble chart with the size of the bubble proportional to the count of observations in the corresponding bin:
alt.Chart(
sust
).mark_circle().encode(
x = alt.X('Env_Domain', bin = alt.Bin(maxbins = 40), title = 'Environmental sustainability'),
y = alt.Y('Econ_Domain', bin = alt.Bin(maxbins = 40), title = 'Economic sustainability'),
size = alt.Size('count()', scale = alt.Scale(scheme = 'bluepurple'))
).configure_axis(
labelFontSize = 14,
titleFontSize = 16
).configure_legend(
labelFontSize = 14,
titleFontSize = 16
)
The following computes a multivariate Gaussian KDE
# retrieve data as 2-d array (num observations, num variables)
fit_ary = sust.loc[:, ['Env_Domain', 'Econ_Domain']].values
# compute KDE
kde = sm.nonparametric.KDEMultivariate(data = fit_ary, var_type = 'cc')
kde
KDE instance
Number of variables: k_vars = 2
Number of samples: nobs = 933
Variable types: cc
BW selection method: normal_reference
A common visualization strategy is to generate a prediction grid: a mesh of values spanning a domain of interest, for the purpose of computing a function at each grid point.
Here is a 20 x 20 mesh:
# resolution of grid (number of points to use along each axis)
grid_res = 20
# find grid point coordinates along each axis
x1 = np.linspace(start = sust.Env_Domain.min(), stop = sust.Env_Domain.max(), num = grid_res)
x2 = np.linspace(start = sust.Econ_Domain.min(), stop = sust.Econ_Domain.max(), num = grid_res)
# generate a mesh from the coordinates
grid1, grid2 = np.meshgrid(x1, x2, indexing = 'ij')
grid_ary = np.array([grid1.ravel(), grid2.ravel()]).T
# plot grid points
alt.Chart(
pd.DataFrame(grid_ary).rename(columns = {0: 'env', 1: 'econ'})
).mark_point(color = 'black').encode(
x = alt.X('env', scale = alt.Scale(zero = False)),
y = alt.Y('econ', scale = alt.Scale(zero = False))
).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
We’ll use a 100 x 100 mesh and kde.pdf()
to compute the estimated density at each grid point:
# resolution of grid (number of points to use along each axis)
grid_res = 100
# find grid point coordinates along each axis
x1 = np.linspace(start = sust.Env_Domain.min(), stop = sust.Env_Domain.max(), num = grid_res)
x2 = np.linspace(start = sust.Econ_Domain.min(), stop = sust.Econ_Domain.max(), num = grid_res)
# generate a mesh from the coordinates
grid1, grid2 = np.meshgrid(x1, x2, indexing = 'ij')
grid_ary = np.array([grid1.ravel(), grid2.ravel()]).T
# compute the density at each grid point
f_hat = kde.pdf(grid_ary)
# rearrange as a dataframe
grid_df = pd.DataFrame({'env': grid1.reshape(grid_res**2),
'econ': grid2.reshape(grid_res**2),
'density': f_hat})
# preview, for understanding
grid_df.head()
env | econ | density | |
---|---|---|---|
0 | 0.132467 | 0.143811 | 1.325548e-17 |
1 | 0.132467 | 0.150278 | 6.367762e-17 |
2 | 0.132467 | 0.156745 | 2.929104e-16 |
3 | 0.132467 | 0.163212 | 1.290785e-15 |
4 | 0.132467 | 0.169679 | 5.451826e-15 |
# kde
kde_smooth = alt.Chart(
grid_df, title = 'Gaussian KDE'
).mark_rect(opacity = 0.8).encode(
x = alt.X('env', bin = alt.Bin(maxbins = grid_res), title = 'Environmental sustainability'),
y = alt.Y('econ', bin = alt.Bin(maxbins = grid_res), title = 'Economic sustainability'),
color = alt.Color('mean(density)', # a bit hacky, but works
scale = alt.Scale(scheme = 'bluepurple', type = 'sqrt'),
title = 'Density')
)
# histogram
bubble = alt.Chart(
sust
).mark_circle().encode(
x = alt.X('Env_Domain', bin = alt.Bin(maxbins = 40), title = 'Environmental sustainability'),
y = alt.Y('Econ_Domain', bin = alt.Bin(maxbins = 40), title = 'Economic sustainability'),
size = alt.Size('count()', scale = alt.Scale(scheme = 'bluepurple'), title = 'Cities')
)
# layer
(bubble + kde_smooth).configure_axis(
labelFontSize = 14,
titleFontSize = 16
).configure_legend(
labelFontSize = 14,
titleFontSize = 16
)
KDE is a nonparametric technique: it involves no population parameters.
Mixture models are a parametric alternative for density estimation. The Gaussian mixture model is: \[ f(x) = a_1 \varphi(x; \mu_1, \sigma_1) + \cdots + a_n \varphi(x; \mu_n, \sigma_n) \]
Let’s fit a mixture to the joint distribution of environmental and economic sustainability indices:
We can inspect the estimated components’ centers (means):
# evaluate log-likelihood
grid_df['gmm'] = np.exp(gmm.score_samples(grid_ary))
# gmm
gmm_smooth = alt.Chart(
grid_df, title = 'GMM'
).mark_rect(opacity = 0.8).encode(
x = alt.X('env', bin = alt.Bin(maxbins = grid_res), title = 'Environmental sustainability'),
y = alt.Y('econ', bin = alt.Bin(maxbins = grid_res), title = 'Economic sustainability'),
color = alt.Color('mean(gmm)', # a bit hacky, but works
scale = alt.Scale(scheme = 'bluepurple', type = 'sqrt'),
title = 'Density')
)
# centers of mixture components
ctr = alt.Chart(centers).mark_point(color = 'black', shape = 'triangle').encode(x = 'env', y = 'econ')
((bubble + gmm_smooth + ctr) | (bubble + kde_smooth)).configure_axis(
labelFontSize = 14,
titleFontSize = 16
).configure_legend(
labelFontSize = 14,
titleFontSize = 16
)
KDE is a nonparametric method and is sometimes called a memory-based procedure: it uses all available data every time an estimated value is calculated.
GMM’s are parametric models.
The GMM is especially useful if there are latent subpopulations in the data. Recall the simulated population of hawks:
# for reproducibility
np.random.seed(40721)
# simulate hypothetical population
female_hawks = pd.DataFrame(
data = {'length': np.random.normal(loc = 57.5, scale = 3, size = 3000),
'sex': np.repeat('female', 3000)}
)
male_hawks = pd.DataFrame(
data = {'length': np.random.normal(loc = 50.5, scale = 3, size = 2000),
'sex': np.repeat('male', 2000)}
)
population_hawks = pd.concat([female_hawks, male_hawks], axis = 0)
population_hawks.groupby('sex').head(1)
length | sex | |
---|---|---|
0 | 53.975230 | female |
0 | 53.076663 | male |
The histogram is not obviously bimodal, but we can suppose we’re aware of the sex differences in length and just don’t have that information.
hist_hawks = alt.Chart(samp).transform_bin(
'length',
field = 'length',
bin = alt.Bin(step = 2)
).transform_aggregate(
count = 'count()',
groupby = ['length']
).transform_calculate(
density = 'datum.count/1000',
length = 'datum.length + 1'
).mark_bar(size = 20).encode(
x = 'length:Q',
y = 'density:Q'
)
hist_hawks.configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
If we fit a mixture model with two components, amazingly, the mixture components accurately recover the distributions for each sex, even though this was a latent (unobserved) variable:
# configure and fit mixture model
gmm_hawks = mixture.GaussianMixture(n_components = 2)
gmm_hawks.fit(samp.length.values.reshape(-1, 1))
# compare components with subpopulations
print('gmm component means: ', gmm_hawks.means_.ravel())
print('population means by sex: ', np.sort(population_hawks.groupby('sex').mean().values.ravel()))
print('gmm component variances: ', gmm_hawks.covariances_.ravel())
print('population variances by sex: ', np.sort(population_hawks.groupby('sex').var().values.ravel()))
gmm component means: [50.70543698 57.33071086]
population means by sex: [50.48194081 57.5749014 ]
gmm component variances: [ 8.60692088 10.12549367]
population variances by sex: [8.522606 9.39645762]
Note that the means and variances are estimated from the sample but compared with the population values above.
Further, the density estimate fits reasonably well:
# compute a grid of lengths
grid_hawks = np.linspace(population_hawks.length.min(), population_hawks.length.max(), num = 500)
dens = np.exp(gmm_hawks.score_samples(grid_hawks.reshape(-1, 1)))
gmm_smooth_hawks = alt.Chart(
pd.DataFrame({'length': grid_hawks, 'density': dens})
).mark_line(color = 'black').encode(
x = 'length',
y = 'density'
)
(hist_hawks + gmm_smooth_hawks).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
Take 2 minutes with your neighbor and use the activity notebook to explore the following questions.
Kernel smoothing is a technique similar to KDE used to visualize and estimate relationships (rather than distributions).
We’ll use the GDP and life expectancy data from lab 3 to illustrate.
# read in data and subset
life = pd.read_csv('data/life-gdp.csv')
life = life[life.Year == 2000].loc[:, ['Country Name', 'All', 'GDP per capita']]
life['GDP per capita'] = np.log(life['GDP per capita'])
life.rename(columns = {'GDP per capita': 'log_gdp', 'All': 'life_exp', 'Country Name': 'country'}, inplace=True)
# scatterplot
scatter = alt.Chart(
life
).mark_point().encode(
x = alt.X('log_gdp', scale = alt.Scale(zero = False), title = 'log(GDP/capita)'),
y = alt.Y('life_exp', scale = alt.Scale(zero = False), title = 'Life expectancy')
)
scatter.configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
The technique consists in estimating trend by local weighted averaging; a kernel function is used to determine the exact weights.
\[ \hat{y}(x) = \frac{\sum_i K_b (x_i - x) y_i}{\sum_i K_b(x_i - x)} \]
# calculate kernel smoother
kernreg = sm.nonparametric.KernelReg(endog = life.life_exp.values,
exog = life.log_gdp.values,
reg_type = 'lc',
var_type = 'c',
ckertype = 'gaussian')
# grid of gdp values
gdp_grid = np.linspace(life.log_gdp.min(), life.log_gdp.max(), num = 100)
# calculate kernel smooth at each value
fitted_values = kernreg.fit(gdp_grid)[0]
# arrange as data frame
pred_df = pd.DataFrame({'log_gdp': gdp_grid, 'life_exp': fitted_values})
# plot
kernel_smooth = alt.Chart(
pred_df
).mark_line(
color = 'black'
).encode(
x = 'log_gdp',
y = alt.Y('life_exp', scale = alt.Scale(zero = False))
)
(scatter + kernel_smooth).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
Notice that the kernel smooth trails off a bit near the boundary – this is because fewer points are being averaged once the smoothing window begins to extend beyond the range of the data.
Locally weighted scatterplot smoothing (LOESS or LOWESS) largely corrects this issue by stitching together lines (or low-order polynomials) fitted to local subsets of data; this way, near the boundary, the estimate still takes account of any trend present in the data.
# fit loess smooth
loess = sm.nonparametric.lowess(endog = life.life_exp.values,
exog = life.log_gdp.values,
frac = 0.3,
xvals = gdp_grid)
# store as data frame
loess_df = pd.DataFrame({'log_gdp': gdp_grid, 'life_exp': loess})
# plot
loess_smooth = alt.Chart(
loess_df
).mark_line(
color = 'blue',
strokeDash = [8, 8]
).encode(
x = 'log_gdp',
y = alt.Y('life_exp', scale = alt.Scale(zero = False))
)
(scatter + loess_smooth).configure_axis(
labelFontSize = 14,
titleFontSize = 16
)
If we compare the LOESS curve with the kernel smoother, the different behavior on the boundary is evident:
Take 2-3 minutes with your neighbor and use the activity notebook to answer the following questions.